PRINCIPLE OF MATHEMATICAL INDUCTION

For all positive integral values of n, $3^{2n} - 2n + 1$ is divisible by

	a) 2	b) 4	c) 8	d) 12							
2.	$3 + 13 + 29 + 51 + 79 + \cdots$ to <i>n</i> terms =										
	a) $2n^2 + 7n^3$,	c) $n^3 + 2n^2$	d) None of these							
3.	If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the following holds for all $n \ge 1$, by the principle of										
	mathematical induction?										
	a) $A^n = 2^{n-1}A + (n-1)A$		b) $A^n = nA + (n-1)I$								
	c) $A^n = 2^{n-1}A - (n-1)A$		$d) A^n = nA - (n-1)I$								
4.	If (n) : $1 + 3 + 5 + + (2n)$	$(n-1) = n^2 $ is									
	a) True for all $n \in N$	b) True for $n > 1$	c) True for no n	d) None of these							
5.	For a positive integer <i>n</i> , Let $a(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + + \frac{1}{(2^n)-1}$. Then										
		b) $a(100) > 100$		d) None of these							
6.	If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then for $n \in N$, A^n is equal to										
	a) $\begin{bmatrix} \cos^n \theta & \sin^n \theta \\ -\sin^n \theta & \cos^n \theta \end{bmatrix}$	b) $\begin{bmatrix} \cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta \end{bmatrix}$	c) $\begin{bmatrix} n\cos\theta & n\sin\theta \\ -n\sin\theta & n\cos\theta \end{bmatrix}$	d) None of the above							
7.		hree consecutive natural nu	•								
	a) 7	b) 9	c) 25	d) 26							
8.	For all $n \in \mathbb{N}$, $\sum_{n \in \mathbb{N}} n$										
	a) $< \frac{(2n+1)^2}{8}$	b) $> \frac{(2n+1)^2}{8}$	c) = $\frac{(2n+1)^2}{8}$	d) None of these							
9.	The product of three cons	secutive natural numbers is	s divisible by								
	a) 5	b) 7	c) 6	d) 4							
10.	0. For all $n \in N$, $5^{2n} - 1$ is divisible by										
	a) 6	b) 11	c) 24	d) 26							
11.	$7^{2n} + 3^{n-1} \cdot 2^{3n-3}$ is divis	ible by									
	a) 24	b) 25	c) 9	d) 13							
12.	For $n \in N$, $10^{n-2} \ge 81n$ is	S									
	a) $n > 5$	b) $n \ge 5$	c) $n < 5$	d) $n > 8$							
13.	For all $n \in N$, $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7}{15n}$ is										
	a) An integer	b) A natural number	c) A positive fraction	d) None of these							
14.	Let $S(k) = 1 + 3 + 5 \dots + 6$	$(2k-1) = 3 + k^2$. Then, w	hich of the following is true	e?							
	a) $S(1)$ is correct		b) $S(k) \Longrightarrow S(k+1)$								
	c) $S(k) \Rightarrow S(k+1)$		d) Principle of mathematical induction can be used to prove the formula								
15.	The smallest positive inte	eger n for which $n! < \left(\frac{n+1}{2}\right)$									
	a) 1	b) 2	c) 3	d) 4							
16.	The remainder when 5 ⁹⁹	is divided by 13, is									
	a) 6	b) 8	c) 9	d) 10							

17.	$10^n + 3(4^{n+2}) + 5$ is divisible by	$(n \in N)$									
	a) 7 b) 5	c) 9	d) 17								
18.	For all $n \in N$, $n^3 + 2n$ is divisible	by									
	a) 3 b) 8	c) 9	d) 11								
19.	For all $n \in N$, $7^{2n} - 48n - 1$ is div	isible by									
	a) 25 b) 26	c) 1234	d) 2304								
20.	$10^n + 3(4^{n+2}) + 5$ is divisible by	$(n \in N)$									
	a) 7 b) 5	c) 9	d) 17								
21.	The <i>n</i> th term of the series $4 + 14$										
	a) $5n-1$ b) $2n^2$	•	d) $2n^2 + 2$								
22.	2. If $P(n)$ is a statement $(n \in N)$ such that, if $P(k)$ is true, $P(k+1)$ is true for $k \in N$, then $p(n)$ is true										
	-	all $n > 1$ c) For all $n > 1$	> 2 d) Nothing can be said								
23.	3. Using mathematical induction, then numbers $a_n{}^\prime s$ are defined by										
	$a_0 = 1$, $a_{n+1} = 3n^2 + n + a_n$, $(n \ge n)$										
	a) $n^3 + n^2 + 1$ b) $n^3 - 1$	$n^2 + 1$ c) $n^3 - n^2$	d) $n^3 + n^2$								
24.	$\frac{(n+2)!}{(n-1)!}$ is divisible by										
	a) 6 b) 11	c) 24	d) 26								
25.		,	$P(k+1) = (k+1)(k+2) + 2$ for all $k \in \mathbb{R}$								
20.	N. So, we can conclude that $P(n)$										
	a) All $n \in N$ b) $n >$		d) Nothing can be said								
26.	For all $n \in N$, $2 \cdot 4^{2n+1} + 3^{3n+1}$ is		,								
	a) 2 b) 9	c) 3	d) 11								
27.	For all $n \in N$, n^4 is less than	,	,								
	a) 10^n b) 4^n	c) 5 ⁿ	d) 10^{10}								
28.	The number $a^n - b^n(a, b \text{ are dist})$	n ct rational numbers and $n \in N$									
	a) $a-b$ b) $a+$		d) $a-2b$								
29.	If $n \in N$, then $3^{2n} + 7$ is divisible		,								
	a) 3 b) 8	c) 9	d) 11								
30.	For each, $n \in N$, $10^{2n-1} + 1$ is div	isible by									
	a) 11 b) 13	c) 9	d) None of these								
31.	If $10^n + 3.4^{n+2} + \lambda$ is exactly divi	sible by 9 for all $n \in N$, then the	east positive integral value of λ is								
	a) 5 b) 3 c) 7 d) 1										
32.	For all $n \in N$, $\cos \theta \cos 2\theta \cos 4\theta \dots \cos 2^{n-1} \theta$ equals to										
	a) $\frac{\sin 2^n \theta}{2^n \sin \theta}$ b) $\frac{\sin 2^n \theta}{\sin 2^n \theta}$	$\frac{n^n \theta}{\theta}$ c) $\frac{\cos 2^n \theta}{2^n \cos 2\theta}$	d) $\frac{\cos 2^n \theta}{2^n \sin \theta}$								
	- 5 5	_ 000_0	$\frac{1}{2^n \sin \theta}$								
33.	The inequality $n! > 2^{n-1}$ is true for										
	a) $n > 2$ b) $n \in$,	d) None of these								
34.	If $P(n): 2 + 4 + 6 \dots + (2n), n \in \mathbb{N}$, then									
	P(k) = k(k+1) + 2 implies										
	P(k) = (k+1)(k+2) + 2	D() (, 1) , 2; , (
	is true for all $k \in N$. So, statement		D. Nama a Call and								
25	a) $n \ge 1$ b) $n \ge 1$,	d) None of these								
35.	If $P(n): 3^n < n!, n \in \mathbb{N}$, then $P(n)$		d) For all n								
26	a) For $n \ge 6$ b) For										
30.			$(n) \Rightarrow P(n+1), P(n)$ is true for all								
27	a) $n > 1$ b) n The sum to n terms of the series 1	c) $n > 2$	d) None of these								
3/.	a) $n^2(n^2-1)$ b) $n^2(n^2-1)$		1) d) $n^2(n^2+1)$								
3Ω	If $n \in N$, then $11^{n+2} + 12^{2n+1}$ is		1) ujn (n + 1)								
50.	$n \in \mathbb{N}$, then $11 + 12 - 18$	mvisible by									

	a) 113	b) 123	c) 133	d) None of these							
39.	For natural number n , 2^n										
	a) $n < 2$	b) $n > 2$	c) $n \geq 2$	d) never							
40.	If $n \in N$, then $n(n^2 - 1)$ i	s divisible by									
	a) 6	b) 16	c) 36	d) 24							
41.	$(2^{3n} - 1)$ will be divisible										
	a) 25	b) 8	c) 7	d) 3							
42.	If $n \in N$, then $x^{2n-1}y^{2n-1}$	^l is divisible by									
	a) $x + y$	b) $x - y$	c) $x^2 + y^2$	d) None of these							
43.	If $x^{2n-1} + y^{2n-1}$ is divisible by $x + y$, if n is										
	a) A positive integer		b) An even positive integer								
	c) An odd positive intege		d) None of the above								
44.		_	then the largest positive in	tegers which divides all the							
	numbers of the type $m^2 - n^2$ is										
	a) 4	b) 6	c) 8	d) 9							
45.	If $x^n - 1$ is divisible by x	-k, then the least positive	integral value of k is								
	a) 1	b) 2	c) 3	d) 4							
46.	If n is a positive integer, t	then $5^{2n+2} - 24n - 25$ is div	visible by								
	a) 574	b) 575	c) 675	d) 576							
47.	For all $n \in N$, $3^{3n} - 26^n$	– 1 is divisible by									
	a) 24	b) 64	c) 17	d) 676							
48.		= 2A - I where I is the iden		_							
	a) $n A - (n-1)I$	b) $nA - I$	c) $2^{n-1}A - (n-1)I$	d) $2^{n-1}A - I$							
49.	If $a_1 = 1$ and $a_n = na_{n-1}$	for all positive integer $n \ge$	2, then a_5 is equal to								
	a) 125	b) 120	c) 100	d) 24							
50.	For all $n \in N$, $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$ is										
	a) Equal to \sqrt{n}										
	b) Less than or equal to \sqrt{n}										
	c) Greater than or equal to \sqrt{n}										
	•	to vn									
51	d) None of these Let $P(n)$: $n^2 + n + 1$ is an even integer. If $P(k)$ is assumed true $\Rightarrow P(k+1)$ is true. Therefore, $P(n)$ is true										
51.			c) For $n > 2$	d) None of these							
52	$2^{3n} - 7n - 1$ is divisible		c) 101 11 > 2	d) None of these							
32.	a) 64	b) 36	c) 49	d) 25							
53	For all $n \in N$, $3n^5 + 5n^3 - 1$,	c) +7	u) 23							
55.	a) 3	b) 5	c) 10	d) 15							
54	,	then $n^3 + 2n$ is divisible by	c) 10	uj 15							
51.	a) 2	b) 6	c) 15	d) 3							
55	For all $n \in N$, $49^n + 16n = 10^n$,	c) 13	u) 3							
55.	a) 64	b) 8	c) 16	d) 4							
56		,		1) is true for all $k \ge 3$, then							
50.	P(n) is true	en that I (5) is true. Itssuin	$\lim_{n \to \infty} f(n) \text{ is true} \to f(n)$	1) is true for all $k \geq 3$, then							
	a) For all n	b) For $n \ge 3$	c) For $n > 4$	d) None of these							
57	•	eger, then $a^n + b^n$ is divisib	-	d) None of these							
57.	a) $a + b$	b) $a-b$	c) $a^2 + b^2$	d) None of these							
5Ω	The <i>n</i> th terms of the series	*	$c_j u + v$	d) None of these							
50.	a) $4n-1$	b) $n^2 + 2n$	c) $n^2 + n + 1$	d) $n^2 + 2$							
50	•	l numbers, then for all $n \in \mathbb{R}$,	,							
39.				-							
	al $a-h$	$h \mid a + b$	c) $2a - b$	$d \mid a - 2b$							
	a) $a-b$	b) $a + b$	c) $2a - b$	d) $a-2b$							

60. $x(x^{n-1} - n\alpha^{n-1}) + \alpha^n(n-1)$ is divisible by $(x - \alpha)^2$ for

b) n > 2

c) All $n \in N$

d) None of these

61. $2^{3n} - 7n - 1$ is divisible by

c) 49

62. The sum of *n* terms of the series $1 + (1 + a) + (1 + a + a^2) + (1 + a + a^2 + a^3) + \cdots$, is

b) $\frac{n}{1-a} + \frac{a(1-a^n)}{(1-a)^2}$ c) $\frac{n}{1-a} + \frac{a(1+a^n)}{(1-a)^2}$ d) $-\frac{n}{1-a} + \frac{a(1-a^n)}{(1-a)^2}$

63. For each $n \in \mathbb{N}$, $3^{2n} - 1$ is divisible by

b) 16

c) 32

d) None of these

64. If *n* is an even positive integer, then $a^n + b^n$ is divisible by

b) a - bc) $a^2 - b^2$

c) $2^{n} + 1$

d) None of these

65. The greatest positive integer, which divides (n+2)(n+3)(n+4)(n+5)(n+6) for all $n \in \mathbb{N}$, is b) 120

66. If $3 + 5 + 9 + 17 + 33 + \cdots$ to n terms = $2^{n+1} + n - 2$, then nth term of LHS is

c) 240

d) 24

b) 2n + 167. For all $n \in N$, $10^n + 3.4^{n+2} + 5$ is divisible by

c) 9

d) 207

d) 3n - 1

68. For all $n \in \mathbb{N}$, $4^n - 3n - 1$ is divisible by

c) 9

d) 11

PRINCIPLE OF MATHEMATICAL INDUCTION

: ANSWER KEY:															
1)	a	2)	С	3)	d	4)	a 4	41)	С	42)	a	43)	a	44)	С
5)	a	6)	b	7)	b	8)		45)	a	46)	d	47)	d	48)	a
9)	c	10)	c	11)	b	12)	b	49)	b	50)	b	51)	d	52)	c
13)	b	14)	b	15)	b	16)	b !	53)	d	54)	d	55)	a	56)	b
17)	C	18)	a	19)	d	20)	c !	57)	a	58)	C	59)	a	60)	c
21)	C	22)	d	23)	b	24)	a 6	61)	c	62)	a	63)	a	64)	d
25)	d	26)	d	27)	a	28)	a 6	65)	b	66)	c	67)	c	68)	C
29)	b	30)	a	31)	a	32)	a								
33)	a	34)	d	35)	b	36)	d								
37)	b	38)	C	39)	b	40)	a								

PRINCIPLE OF MATHEMATICAL INDUCTION

: HINTS AND SOLUTIONS :

1 (a)

On putting n = 2 in $3^{2n} - 2n + 1$, we get $3^{2 \times 2} - 2 \times 2 + 1 = 81 - 4 + 1 = 78$

Which is divisible by 2

2 **(c**

Clearly, $n^3 + 2n^2$ gives the sum of the series for n = 1, 2, 3 etc.

3 **(d**)

 $A^{2} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ $A^{3} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$

 $A^n = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ can be verified by induction. Now,

taking option

(b) $\begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix} = \begin{bmatrix} n & 0 \\ n & n \end{bmatrix} + \begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix} \neq \begin{bmatrix} 2n-1 & 0 \\ 1 & 2n-1 \end{bmatrix}$

 $(d)nA - (n-1)I = \begin{bmatrix} n & 0 \\ n & n \end{bmatrix} - \begin{bmatrix} n-1 & 0 \\ 1 & n-1 \end{bmatrix}$

 $= \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix} = A^n$

4 (a)

Given, (n): $1 + 3 + 5 + ... + (2n - 1) = n^2$

P(1): 1 = 1(true)

Let $P(k) = 1 + 3 + 5 + ... + (2k - 1) = k^2$ $\therefore P(k + 1) = 1 + 3 + 5 + ... + (2k - 1) + 2k + 1$ $= k^2 + 2k + 1 = (k + 1)^2$

So, it holds for all n.

5 (a

It can be proved with the help of mathematical induction that $\frac{n}{2} < a(n) \le n$.

$$\therefore \frac{200}{2} < a(200) \Rightarrow a(200) > 100$$
and $a(100) \le 100$

6 **(b**)

Given, $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ Now, $A^2 = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ $= \begin{bmatrix} \cos^2 \theta - \sin^2 \theta & 2\sin \theta \cos \theta \\ -2\sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix}$

- $= \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$ $\therefore \text{ By induction, } A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}$
- 9 (c

Let $P(n) \equiv n(n+1)(n+2)$

 $P(1) \equiv 1 \cdot 2 \cdot 3 = 6$

 $P(2) \equiv 2 \cdot 3 \cdot 4 = 24$

Hence, it is divisible by 6.

10 **(c)**

We have,

$$5^{2n} - 1 = (5^2)^n - 1 = (1 + 24)^n - 1$$

$$\Rightarrow 5^{2n} - 1 = {}^{n}C_1 \times 24 + {}^{n}C_2 \times 24^2 + \dots + {}^{n}C_n$$

$$\times 24^n$$

$$\Rightarrow 5^{2n} - 1 = 24({}^{n}C_1 + {}^{n}C_2 \times 24 + \dots + {}^{n}C_n$$

 $\Rightarrow 5^{2n} - 1 = 24({}^{n}C_{1} + {}^{n}C_{2} \times 24 + \dots + {}^{n}C_{n} \times 24^{n-1})$

 \Rightarrow 5²ⁿ – 1 is divisible by 24 for all $n \in N$

12 **(b)**

Let P(n): $10^{n-2} \ge 81n$

For $n = 4, 10^2 \ge 81 \times 4$

For $n = 5, 10^3 \ge 81 \times 5$

Hence, by mathematical induction for $n \ge 5$, the proposition is true.

14 **(b)**

 $S(k) = 1 + 3 + 5...+(2k - 1) = 3 + k^2$

Put k = 1 in both sides, we get

LHS = 1 and RHS = 3 + 1 = 4

⇒ LHS ≠ RHS

Put (k + 1) in both sides in the place of k, we get

LHS = $1 + 3 + 5 \dots + (2k - 1) + (2k + 1)$

RHS = $3 + (k + 1)^2 = 3 + k^2 + 2k + 1$

Let LHS = RHS

Then, $1 + 3 + 5 \dots + (2k - 1) + (2k + 1)$

$$= 3 + k^2 + 2k + 1$$

 \Rightarrow 1 + 3 + 5 +...+(2k - 1) = 3 + k²

If S(k) is true, then S(k + 1) is also true.

Hence, $S(k) \Longrightarrow S(k+1)$

15 **(b)**

Given, $n! < \left(\frac{n+1}{2}\right)^n$

At n=1,

 $1! \neq 1$

At n=2,

$$2! < \left(\frac{3}{2}\right)^2$$

 \Rightarrow 2 < 2.25 which is true.

16 **(b)**

$$5^{99} = 5(5^2)^{49} = 5(25)^{49}$$

$$=5(26-1)^{49}$$

$$= 5 \times 26 \times (Positive term) - 5$$

So, when it is divided by 13, it gives the remainder -5 or 8.

17 **(c)**

On putting
$$n = 2$$
 in $10^n + 3(4^{n+2}) + 5$, we get $10^2 + 3 \times 4^4 + 5 = 100 + 768 + 5 = 873$

Which is divisible by 9

18 **(a)**

For n = 1, 2, 3, we find that $n^3 + 2n$ takes values 3, 12 and 33, which are divisible by 3

19 (d)

We have,

$$7^{2n} - 48n - 1 = (1 + 48)^n - 48n - 1$$

$$\Rightarrow 7^{2n} - 48n - 1$$

$$= {}^{n}C_{2} \times 48^{2} + {}^{n}C_{3} \times 48^{3} + \cdots + {}^{n}C_{n} \times 48^{n}$$

 $\Rightarrow 7^{2n} - 48n - 1$ divisible by 48^2 i.e., 2304

20 **(c)**

For
$$n = 1$$
, $10^n + 3 \cdot 4^{n+2} + 5$

 $= 10 + 3 \cdot 4^3 + 5 = 207$ which is divisible by 9.

 \therefore By induction, the result is divisible by 9.

21 **(c**

We observe that $3n^2 + n$ gives various terms of the series by putting n = 1, 2, 3, ...

22 **(d**)

Unless we prove P(1) is true, nothing can be said.

23 **(b**)

Given,
$$a_0 = 1$$
, $a_{n+1} = 3n^2 + n + a_n$

$$\Rightarrow a_1 = 3(0) + 0 + a_0 = 1$$

$$\Rightarrow a_2 = 3(1)^2 + 1 + a_1 = 3 + 1 + 1 = 5$$

From option (b),

$$Let P(n) = n^3 - n^2 + 1$$

$$\therefore P(0) = 0 - 0 + 1 = 1 = a_0$$

$$P(1) = 1^3 - 1^2 + 1 = 1 = a_1$$

and
$$P(2) = (2)^3 - (2)^2 + 1 = 5 = a_2$$

25 **(d**)

It is obvious, nothing can be said.

26 **(d**)

Let
$$P(n) = 2 \cdot 4^{2n+1} + 3^{3n+1}$$

 $P(1) \equiv 128 + 81 = 209$ (divisible by 11 only)

28 **(a)**

Let
$$P(n) \equiv a^n - b^n$$

$$P(1) \equiv a - b$$

$$P(2) \equiv a^2 - b^2$$

Hence, it is divisible by a - b.

29 **(b**)

 $3^{2n} + 7$ is divisible by 8. This can be checked by putting n = 1, 2, 3 etc.

30 **(a)**

Let
$$P(n) = 10^{2n-1} + 1$$

$$P(1) = 10 + 1 = 11$$

Let $P(k) \equiv 10^{2k-1} + 1 = 11I$ is true

Now,
$$P(k+1) = 10^{2k+1} + 1$$

$$=(11I-1)100+1$$

$$= 1100I - 99 = 11I_1$$

So, P(k + 1) is true.

33 **(a)**

Let
$$P(n) \equiv n! > 2^{n-1}$$

$$P(3) \equiv 6 > 4$$

Let $P(k) \equiv k! > 2^{k-1}$ is true.

$$\therefore P(k+1) = (k+1)! = (k'+1)k!$$

$$> (k+1)2^{k-1}$$

$$> 2^k$$
 (as $k + 1 > 2$)

34 **(d)**

Here, P(1) = 2 and from the equation

$$P(k) = k(k+1) + 2$$

$$\Rightarrow P(1) = 4$$

So, P(1) is not true

Hence, mathematical induction is not applicable.

35 **(b**)

Given that, P(n): $3^n < n!$

Now,
$$P(7)$$
: $3^7 < 7!$ is true

Let P(k): $3^k < k!$

$$\Rightarrow P(k+1) \colon 3^{k+1} = 3 \cdot 3^k < 3 \cdot k! < (k+1)! \ \ ($$

: k+1>3)

36 **(d)**

$$P(n) = n^2 + n$$

It is always odd but square of any odd number is always odd and also sum of two odd number is always even. So, for no any n for which this statement is true.

37 **(b)**

 $n^2(2n^2-1)$ gives the sum of the series for n=1,2, etc.

38 **(c)**

On putting n = 1 in $11^{n+2} + 12^{2n+1}$, we get $11^{1+2} + 12^{2\times 1+1} = 11^3 + 12^3 = 3059$

Which is divisible by 133

39 **(b)**

The condition $2^n(n-1)! < n^n$ is satisfied for n >

40 (a)

We have,

 $n(n^2-1)=(n-1)(n+1)$, which is product of three consecutive natural numbers and hence divisible by 6

$$2^{3n} - 1 = (2^3)^n - 1$$

$$= 8^n - 1 = (1+7)^n - 1$$

$$= 1 + {}^nC_17 + {}^nC_27^2 + ... + {}^nC_n7^n - 1$$

$$= 7[{}^nC_1 + {}^nC_27 + ... + {}^nC_n7^{n-1}]$$

$$\therefore 2^{3n} - 1 \text{ is divisible by } 7$$

Let
$$P(n) \equiv x^{2n-1} + y^{2n-1} = \lambda(x+y)$$

 $P(1) \equiv x + y = \lambda_1(x+y)$
 $P(2) \equiv x^3 + y^3 = \lambda_2(x+y)$

Hence, for $\forall n \in N, P(n)$ is true.

44 **(c)**

Let m = 2k + 1, n = 2k - 1 $(k \in N)$ $\therefore m^2 - n^2 = 4k^2 + 1 + 4k - 4k^2 + 4k - 1 = 8k$ Hence, All the numbers of the form $m^2 - n^2$ are always divisible by 8.

46 **(d)**

Let
$$P(n) = 5^{2n+2} - 24n - 25$$

For $n = 1$
 $P(1) = 5^4 - 24 - 25 = 576$
 $P(2) = 5^6 - 24(2) - 25 = 15552$
 $= 576 \times 27$

Here, we see that P(n) is divisible by 576

47 **(d)**

We have,

$$\begin{split} 3^{3n} - 26n - 1 &= 27^n - 26n - 1 \\ \Rightarrow 3^{3n} - 26n - 1 &= (1 + 26)^n - 26n - 1 \\ \Rightarrow 3^{3n} - 26n - 1 \\ &= {}^nC_2 \times 26^2 + {}^nC_3 \times 26^3 + \cdots \\ &+ {}^nC_n \times 26^n \end{split}$$

Clearly, RHS is divisible 26² i.e. 676

48 **(a)**

As we have $A^2 = 2A - I$

$$\Rightarrow A^2A = (2A - I)A = 2A^2 - IA$$

$$\Rightarrow A^3 = 2(2A - I) - IA = 3A - 2I$$
Similarly, $A^4 = 4A - 3I$

$$A^5 = 5A - AI$$

$$A^n = nA - (n-1)I$$

49 **(b)**

Given,
$$a_n = na_{n-1}$$

For $n = 2$
 $a_2 = 2a_1 = 2$ (: $a_1 = 1$ given)
 $a_3 = 3a_2 = 3(2) = 6$

$$a_4 = 4(a_3) = 4(6) = 24$$

 $a_5 = 5(a_4) = 5(24) = 120$

51 **(d)**

Given, $P(n): n^2 + n + 1$

At n = 1, P(1) : 3, which is not an even integer. $\therefore P(1)$ is not true (Principle of Induction is not applicable).

Also, n(n + 1) + 1 is always an odd integer.

52 **(c)**

Let
$$P(n) = 2^{3n} - 7n - 1$$

 $\therefore P(1) = 0, P(2) = 49$

P(1) and P(2) are divisible by 49.

Let
$$P(k) \equiv 2^{3k} - 7k - 1 = 49I$$

$$P(k+1) \equiv 2^{3k+3} - 7k - 8$$

$$= 8(49I + 7k + 1) - 7k - 8$$

$$= 49(8I) + 49k = 49I_1$$

Alternate

$$P(n) = (1+7)^{n} - 7n - 1$$

$$= 1 + 7n + 7^{2} \frac{n(n-1)}{2!} + \dots - 7n - 1$$

$$= 7^{2} \left(\frac{n(n-1)}{2!} + \dots \right)$$

53 **(d)**

Putting $n = 1, 2, 3 \dots$, it can be checked that $3n^5 +$ $5n^3 + 7n$ is divisible by 15

54 **(d)**

Let
$$P(n) = n^3 + 2n$$

$$\implies$$
 $P(1) = 1 + 2 = 3$

$$\implies$$
 $P(2) = 8 + 4 = 12$

$$\implies$$
 $P(3) = 27 + 6 = 33$

Here, we see that all these number are divisible by

55 **(a)**

We observe that $49^n + 16n - 1$ takes values 64 Hence, $49^n + 16n - 1$ is divisible by 64

56 **(b)**

Since, P(3) is true.

Assume P(k) is true $\Rightarrow P(k+1)$ is true means, if P(3) is true $\Rightarrow P(4)$ is true $\Rightarrow P(5)$ is true and so on. So, statement is true for all $n \ge 3$.

58 **(c)**

Putting $n = 1, 2, 3 \dots$, we observe that 4n - 1 is the *n*th term

60 **(c)**

Let
$$P(n) = x(x^{n-1} - n\alpha^{n-1}) + \alpha^n(n-1) = (x - \alpha)^2 g(x)$$

 $P(1) \equiv 0$ is true.

Let P(k) is true.

$$ie, x(x^{k-1} - k\alpha^{k-1}) + \alpha^k(k-1) = (x - \alpha)^2 g(x)$$

Now,
$$P(k + 1) \equiv x[x^k - (k + 1)\alpha^k] + \alpha^{k+1}(k)$$

 $\equiv (x - \alpha)^2 [xg(x) + k\alpha^{k-1}]$ (True) So, holds for all $n \in N$.

61 **(c)**

Let
$$P(n) = 2^{3n} - 7n - 1$$

 $\therefore P(1) = 0$
 $P(2) = 49$

P(1) and P(2) are divisible by 49.

Let
$$P(k) \equiv 2^{3k} - 7k - 1 = 49I$$

$$\therefore P(k+1) \equiv 2^{3k+3} - 7k - 8$$

$$= 8(49I + 7k + 1) - 7k - 8$$

$$= 49(8I) + 49k = 49I_1$$

Hence, by mathematical induction $2^{3n} - 7n - 1$ is divisible by 49.

63 **(a)**

$$Let P(n) = 3^{2n} - 1$$

At n = 1, P(1) = 8 which is divisible by 8.

 $\therefore P(1)$ is true.

Let P(k) is true, then

$$P(k) \equiv 3^{2k} - 1 = 8I$$

$$\therefore P(k+1) \equiv 3^{2k+2} - 1 = (8I+1)9 - I$$

$$= 72I + 8 = 8I_1$$

 \therefore P(n) is divisible by 8, \forall $n \in \mathbb{N}$.

68 **(c)**

It can be checked that $4^n - 3n - 1$ is divisible by 9 for n = 1, 2, 3, ...

